Create a Manhattan plot for the results of HiCcompare

manhattan_plot(hic.table, adj.p = TRUE, alpha = 0.05, return_df = FALSE)

Arguments

hic.table

a hic.table object that has been normalized and had differences detected.

adj.p

Logical, should the adjusted p-value be used (TRUE) of the raw p-value (FALSE)?

alpha

The alpha level for calling a p-value significant.

return_df

Logical, should the data.frame built to be used for plotting be returned? If TRUE then the data.frame will be returned and the plot will only be printed.

Value

A manhattan plot.

Details

This function will produce a manhattan plot of the results of hic_compare(). Can be used to display which regions around found to be significantly different on the linear genome.

Examples

# Create hic.table object using included Hi-C data in # sparse upper triangular matrix format data('HMEC.chr22') data('NHEK.chr22') hic.table <- create.hic.table(HMEC.chr22, NHEK.chr22, chr = 'chr22') # Plug hic.table into hic_loess() result <- hic_loess(hic.table, Plot = TRUE)
#> Span for loess: 0.219052588777294
#> GCV for loess: 0.000118686898199309
#> AIC for loess: -0.212037314500057
# perform difference detection diff.result <- hic_compare(result, Plot = TRUE)
#> Filtering out interactions with A < 23
# make manhattan plot manhattan_plot(diff.result)